Installation, Safety, Operation & Maintenance Instructions And Parts List
For Models PB, PBS, SPB, LM, HP-Series I & II, RBE, HDBI and HDAF
Arrangement 8 Blowers

NOTE
READ ENTIRE MANUAL INCLUDING “SECTION IV. INITIAL UNIT STARTUP” BEFORE
ATTEMPTING TO INSTALL AND OPERATE THIS EQUIPMENT.

BLOWER SPECIFICATIONS

BLOWER SERIAL NUMBER: _________________ MFG. DATE: _______________

NOTE: The serial number above is a required reference for any assistance. It is stamped on the blower nameplate.

BLOWER SPECIFICATIONS:

Model: _______ Arrangement: _______ Rotation: _______ Discharge: _______

Nominal Inlet Size: _______ (in Inches) Wheel Size and Type: ______________

BLOWER PERFORMANCE DATA: (If entered on order)

CFM: _______ SP: _______ (Inches of Water Gauge) Motor BHP: _______

Density: _______ Altitude: _______ (Ft. above S.L.) Airstream Temperature: _______°F.

Fan RPM: _______ Maximum Safe Fan RPM: _______ DO NOT EXCEED THIS RPM

MOTOR DATA: (This section is completed only if the motor was supplied by Cincinnati Fan)

HP: _______ RPM: _______ Voltage: __________________ Phase:_______

Hz: _______ Frame Size: _______ Enclosure: _______ Efficiency: _______

IF Motor is EXP, Class(es) & Group(s) are: __________________

Manufacturers Model Number: __________________ CFV Part Number: _______

ATTENTION: RECEIVING DEPARTMENT

All Cincinnati Fan products are packaged to minimize any damage during shipment. The freight carrier is responsible
for delivering all items in their original condition as received from Cincinnati Fan. The individual receiving this equipment
is responsible for inspecting this unit for any obvious or concealed damage. If any damage is found, it should be noted
on the bill of lading before the freight is accepted and the receiver must file a claim with the freight carrier.

LONG TERM STORAGE NOTICE

If this blower will NOT be installed and put into operation within 30 days, refer to the “Long Term Storage
Instructions” on page 14. Failure to follow all applicable long term storage instructions, will void your warranty.
This blower should be stored indoors in a clean, dry location.
I. GENERAL

A. Unpacking:

Be careful not to damage or deform any parts of the blower when removing it from the packaging container. All the packaging material should be kept in the event the blower needs to be returned.

Handling:

Handling of the blower should be performed by trained personnel and be consistent with all safe handling practices. Verify that all lifting equipment is in good operating condition and has the proper lifting capacity. The blower should be lifted using well-padded chains, cables or lifting straps with spreader bars. Some blower models have lifting eye locations provided in the blower base. NEVER lift the blower by an inlet or discharge flange, blower or motor shaft, motor eye bolt, or any other part of the blower assembly that could cause distortion of the blower assembly.

B. Safety Instructions & Accessories:

1. Safety Instructions:

 All installers, operators and maintenance personnel should read AMCA Publication 410-96, “Recommended Safety Practices for Users and Installers of Industrial and Commercial Fans”. This manual is included with the blower. Additional copies can be requested by writing us at Cincinnati Fan, 7697 Snider Rd., Mason, OH 45040-9135

2. Sound:

 Some blowers can generate sound that could be hazardous to personnel. It is the responsibility of the user to measure the sound levels of the blower and/or system, determine the degree of personnel exposure, and comply with all applicable safety laws and requirements to protect personnel from excessive noise.
3. Air Pressure and Suction:
In addition to the normal dangers of rotating machinery, the blower can present additional hazards from the suction or pressure created at the blower inlet or discharge. Suction at the blower inlet can draw materials into the blower where they become high velocity projectiles at the discharge and cause severe personal injury or death. It can also be extremely dangerous to persons in close proximity to the inlet or discharge as the forces involved can overcome the strength of most individuals.

![WARNING]

NEVER OPERATE A BLOWER WITH A NON-DUCTED INLET AND/OR DISCHARGE. IF THE BLOWER INLET AND/OR DISCHARGE IS NON-DUCTED, IT IS THE USERS RESPONSIBILITY TO INSTALL AN INLET AND/OR DISCHARGE GUARD.

4. Temperature:
Many blowers, blower components and all motors operate at temperatures that could burn someone if they come in contact with them. If this potential hazard could exist in your installation, steps must be taken by the user to protect anyone from coming in contact with this equipment.

5. Spark Resistance: (Per AMCA Standard 99-0401-86 and ISO 13499)

![DANGER]

NO GUARANTEE OF ANY LEVEL OF SPARK RESISTANCE IS IMPLIED BY SPARK RESISTANT CONSTRUCTION. IT HAS BEEN DEMONSTRATED THAT ALUMINUM IMPELLERS RUBBING ON RUSTY STEEL CAN CAUSE HIGH INTENSITY SPARKS. AIR STREAM MATERIAL AND DEBRIS OR OTHER SYSTEM FACTORS CAN ALSO CAUSE SPARKS.

6. Safety Accessories:
Guards:
All moving parts must be guarded to protect personnel. Safety requirements can vary, so the number and types of guards required to meet company, local, state and OSHA regulations must be determined and specified by the actual user or operator of the equipment.

NEVER start any blower without having all required safety guards properly installed. All blowers should be checked on a regular schedule, for missing or damaged guards. If any required guards are found to be missing or defective, the power to the blower should be immediately turned off and locked out in accordance with OSHA regulations. Power to the blower should NOT be turned back on until the required guards have been repaired or replaced.

This blower can become dangerous due to a potential “windmill” effect, even though all electrical power has been turned off or disconnected. The blower wheel should be carefully secured to prevent any rotational turning BEFORE working on any parts of the blower/motor assembly that could move.

7. Access or Inspection Doors:

![DANGER]

NEVER OPEN ANY ACCESS OR INSPECTION DOORS WHILE THE BLOWER IS OPERATING. SERIOUS INJURY OR DEATH COULD RESULT FROM THE EFFECTS OF AIR PRESSURE, AIR SUCTION OR MATERIAL THAT IS BEING CONVEYED. DISCONNECT OR LOCK OUT POWER TO THE BLOWER AND LET THE BLOWER WHEEL COME TO A COMPLETE STOP BEFORE OPENING ANY TYPE OF ACCESS OR INSPECTION DOOR.

II. INSTALLATION

A. Vibration:
Before any mounting method is selected, the user should be aware of the effects vibration will have on the blower, motor and other parts. Improper blower installation can cause excessive vibration causing premature wheel and/or bearing failure, that is not covered under warranty. Vibration eliminator pads, springs or bases should be properly installed to prevent any blower vibration from transmitting to the foundation, support structure or ducting.

![WARNING]

SHUT THE BLOWER DOWN IMMEDIATELY IF THERE IS ANY SUDDEN INCREASE IN VIBRATION.

B. Mounting Methods:
1. Floor Mounted Units;
Centrifugal blowers should be mounted on a flat, level, concrete foundation weighing 2-3 times the weight of the complete blower/motor assembly. It is recommended that the foundation be at least 6" larger than the base of the blower. The foundation should include anchor bolts such as shown in Fig. 1 on page 4. Place the blower over the anchor bolts and shim under each bolt until the blower is level. After shimming, flat washers, lock washers and lock nuts should be tightened at each anchor bolt. Any gaps between the blower base and the foundation should be grouted. If the blower will be sitting on some type of vibration pads or mounts, follow the recommended mounting procedures supplied with the vibration elimination equipment.
2. Elevated Units:
Improper mounting of elevated blowers can cause vibration problems. The structure that the blower/motor assembly will be mounted on must be strong enough to support at least 3 times the weight of the entire blower/motor assembly. An insufficient support will cause excessive vibration and lead to premature wheel and/or bearing failures. Bracing of the support structure must be sufficient enough to prevent any side sway. The entire structure should be welded at all connection joints to maintain constant alignment.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>THE IMPROPER DESIGN OF AN ELEVATED PLATFORM STRUCTURE COULD RESULT IN A RESONANT CONDITION, AND CONSEQUENTLY, CAUSE A LIFE THREATENING, CATASTROPHIC, STRUCTURAL FAILURE.</td>
</tr>
</tbody>
</table>

C. Duct Work Connections:
All duct connections to the blower should include flexible connectors between the ducting and the blower inlet and/or discharge. This will eliminate distortion, noise and vibration from transmitting to the duct and building. The connectors should be selected to handle the operating conditions for air volume and pressure that the blower will produce. All ducting or accessories, added by the user, should be independently supported. DO NOT use the blower/motor assembly to support any additional weight. Inlet and/or discharge duct elbows should be located a minimum of 2 blower wheel diameters from the blower. Any duct elbows located closer than 2 wheel diameters to the blower inlet or discharge WILL reduce the air performance and blower efficiency. Any duct elbows near the blower discharge should be in the same rotational direction as the blower rotation.

Non-Ducted Blower Inlet:
Any blower with no ducting on the inlet must have an inlet guard. The blower should be located so the blower inlet is, at least, 1 wheel diameter away from any wall or bulkhead to eliminate a reduction in air flow.

Non-Ducted Blower Discharge:
Any blower with no ducting on the discharge must have a discharge guard.

D. Safety Guards:
Cincinnati Fan offers guards, as optional, to keep your blower in compliance with OSHA safety regulations. These include inlet or discharge guards, shaft/bearing guards and belt guards. Any blowers built with high temperature construction, a heat slinger guard is standard. All arrangement 8 blowers include a shaft/bearing/coupling guard as standard. It is the responsibility of the user to make sure this blower meets all local, state and OSHA safety regulations. If you have a specific guard requirement not covered by OSHA, please contact the local Cincinnati Fan sales office for assistance.

E. Dampers and Valves: (Airflow control devices)
If the blower is supplied with any type of airflow control device, it should be closed before initial startup of the blower to minimize overloading of the motor. Any airflow control device, with bearings, should be maintained in accordance with the manufacturers instructions. Any air flow control device, with an automatic control mechanism, should be adjusted per the manufacturers recommendations.
F. Set Screw and Taper-lock Bushing Torque Values:
All blower wheel set screws are tightened to the proper torque prior to shipment. Some wheels may have taper-lock hubs and split, taper-lock bushings to secure the wheel to the blower shaft.

NOTE: Check all set screw or taper-lock bushing torques. Forces encountered during shipment, handling, rigging and temperature can affect factory settings. For correct torque values, see Tables 1 and 2 below.

<table>
<thead>
<tr>
<th>SET SCREW TORQUE VALUES</th>
<th>TORQUE VALUES FOR TAPER-LOCK BUSHINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diameter & Number of Treads/Inch</td>
<td>Hex Wrench Size (Across Flats)</td>
</tr>
<tr>
<td>1/4-20</td>
<td>5/32"</td>
</tr>
<tr>
<td>5/16-18</td>
<td>7/32"</td>
</tr>
<tr>
<td>3/8-16</td>
<td>3/16"</td>
</tr>
<tr>
<td>1/2-13</td>
<td>1/4"</td>
</tr>
<tr>
<td>5/8-11</td>
<td>5/16"</td>
</tr>
</tbody>
</table>

NOTE: Set screws should NEVER be used more than once. If the set screws are loosened, they MUST be replaced. Use only knurled, cup-point, set screws with a nylon locking patch.

G. Blower Bearings:
If the blower bearings have set screws to lock the bearings onto the blower shaft, the set screws should be tightened to the same torque levels as shown in Table 1 above. Blower bearings should be lubricated in accordance with the bearing manufacturer's recommendation and with the same type of grease. See chart under B-2 on page 10. Bearings are pre-lubricated at the factory. The blower shaft/bearing/coupling guard (if included) should only be removed for inspection before start-up and during inspection or maintenance. but only after the power to the motor has been turned off and locked out. The blower shaft/bearing/coupling guard MUST be replaced before the power is turned back on.

III. ELECTRICAL
A. Disconnect Switches:
All blower motors should have an independent disconnect switch located in close visual proximity to turn off the electrical service to the blower motor. Disconnects must be locked out in accordance with OSHA “lock out-tag out” procedures any time inspection or maintenance is being performed on the blower and/or motor assembly. The “lock out-tag out” procedure should be performed by a licensed electrician or authorized personnel.
All disconnects should be sized in accordance with the latest NEC codes (National Electric Codes) and any local codes and should be installed only by a licensed electrician. “Slow blow” or “time delay” fuses or breakers should be used since the initial start-up time for the blower motor, although rare, can be up to 10 seconds.

B. Motors:

1. DO NOT connect or operate a motor without reading the motor manufacturers instructions supplied with the motor. The basic principle of motor maintenance is: KEEP THE MOTOR CLEAN AND DRY. This requires periodic inspections of the motor. The frequency of the inspections depends on the type of motor, the service and environment it will be subjected to and the motor manufacturers instructions.

2. Cleaning: Cleaning should be limited to exterior surfaces only. Follow motor manufacturers cleaning instructions.

3. Lubrication: Most small motors have sealed bearings that are permanently lubricated for the life of the motor. Some larger motors have grease plugs that should be replaced with grease fittings to perform re-lubrication. These motors, or any motor with grease fittings, should be lubricated in accordance with the motor manufacturers recommendations. Lubrication frequency depends on the motor horsepower, speed and service. BE SURE you use compatible grease and DO NOT over grease.
4. **Location:** If the motor will be outside and subjected to the weather, it is recommended that a weather cover be installed to keep rain and snow off of the motor. No motors are guaranteed to be “watertight”. Be careful to allow enough openings between the motor and the motor cover to let the motor "breath". If the back end of the motor is covered, the cover should be no closer than 3" to the back of the motor for proper ventilation.

5. **Wiring Connections:** All wiring connections should be made for the proper voltage and phase as shown on the motor nameplate. Connections should follow the motor manufacturers recommendations as shown on the wiring schematic. This wiring diagram will be located on the outside of the motor, inside of the motor conduit box or on the motor nameplate. **Reversing some wires might be necessary to get the correct blower rotation.**

6. **Motors with Thermal Overload Protection:** If a motor is equipped with thermal overloads, the thermal overload must be wired per the wiring schematic to be operable. **There are 3 types of thermal overloads:**
 a. **Automatic:** These will automatically shut the motor down if the internal temperature exceeds the design limits.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE SURE YOU LOCK OUT THE POWER TO THE MOTOR BEFORE INSPECTING ANY MOTOR WITH AUTOMATIC THERMALS. WHEN THE THERMALS COOL DOWN, THEY WILL ALLOW THE MOTOR TO AUTOMATICALLY START UP AGAIN, UNLESS YOU HAVE LOCKED OUT THE POWER TO THE MOTOR.</td>
</tr>
</tbody>
</table>

 b. **Manual:** These motors will have a button on them. If the motor overheats, it will shut down. After you have inspected the motor and eliminated the overheating problem, you will need to “reset” it by pushing the button. **You should still lock out the power BEFORE inspecting the motor.**
 c. **Thermostats:** This type of thermal is a temperature sensing device **ONLY**. If the motor overheats, the thermostats will open or close (depending on the type) and send a “signal” to the electrical box. **THEY WILL NOT TURN THE MOTOR OFF.** These are pilot circuit devices that **must** be connected to the magnetic starter circuit.

7. **EXPLOSION PROOF Motors:** No motor is explosion proof. Explosion proof motors are designed so if there is an explosion **WITHIN** the motor, the explosion will be **CONTAINED INSIDE** the motor and not allowed to get out to the atmosphere. All explosion proof motors must be selected based on the atmosphere and/or the environment the motor will be operating in. Explosion proof motors are designed, rated, and labeled for their operating conditions based on Classes, Groups and “T” Codes. **The Class, Group and “T” code of an EXP motor MUST be selected based on the atmosphere and/or environmental conditions the motor will be operating in.** Consult the NEC (National Electric Code) and the NFPA (National Fire Protection Association) for the proper EXP motor Class, Group and “T” Code required for your specific application and location.

<table>
<thead>
<tr>
<th>DANGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>IF AN EXPLOSION PROOF MOTOR IS USED IN AN AREA CONTAINING VOLATILE LIQUIDS, GASES, FUMES OR DUST FOR WHICH THE MOTOR WAS NOT DESIGNED TO OPERATE IN, AN EXPLOSION AND/OR FIRE CAN OCCUR.</td>
</tr>
</tbody>
</table>

NOTICE:
 a. All EXP motors have some type of thermal overload as required by UL (Underwriters Laboratories). Refer to all of Section 6 above.
 b. All EXP motors are required to have the UL (Underwriters Laboratories) and CSA (Canadian Standards Association) listing numbers on the motor name plate or on a separate plate attached to the motor. The Class, Group and “T” Code the motor is designed for must also be listed.

8. **Normal Motor Operating Temperatures:**
 Using your hand to test the normal running temperature of a motor can be a very painful experience;
 The normal operating temperature of a fully loaded, open type, electric motor operating in a 70°F. (21°C.) ambient temperature is 174°F. (79°C.)

C. **Maximum Blower Speed and Motor Speed Controllers:**
 If you will be using any type of motor speed controller with this blower, **DO NOT exceed the maximum safe blower speed.** Installing and using a speed control device requires special training and certification as required by the speed control manufacturer. See the manufacturers instructions for proper use, installation and wiring connections for the maximum speed settings. It may also be necessary to “block out” some speeds to eliminate a resonant vibration problem. The maximum safe blower speed is shown on the data sheet shipped with the blower. If you have lost the data sheet, contact Cincinnati Fan or our sales office for your area. You must have the serial number from the blower name plate for us to determine the maximum safe blower speed.

Cincinnati Fan will only **extend** the motor manufacturers warranty, when used with a speed controlling device, if the motor has the words “**Inverter Duty**” marked on the motor name plate. If the motor does not have “**Inverter Duty**” marked on the motor name plate, and you have a motor failure, you will be required to contact the motor manufacturer for any service or warranty claims.
IV. INITIAL UNIT STARTUP

NOTICE: Failure to complete and document all the following pre-startup and both post-startup checks, listed in sections A (below) and B on pages 8 and 9, could void all warranties.

A. Pre-Startup & Post-Startup Checks: (Check blocks as each step is completed. Retain this for your records.)

A1. Pre-Startup Checks Completed By: _______________________________ DATE: ___________________
A2. 8 Hour, Post-Startup Checks Completed By: ___________________ DATE: ___________________
A3. 3 Day, Post-Startup Checks Completed By: ___________________ DATE: ___________________

MAKE SURE POWER TO THE MOTOR IS LOCKED OUT BEFORE STARTING PRE-START OR POST-START CHECKS.

1. Check all blower, foundation and duct work hardware to make sure it is tight.
2. Check all blower wheel, coupling and bearing set screws to make sure they are tight per Table 1 on page 5.
3. If the blower wheel has a taper-lock bushing, make sure the bolts are tightened per Table 2 on page 5.
4. Make certain there is no foreign material in the blower or duct work that can become a projectile.
5. Remove the shaft/coupling guard and check the alignment of the coupling per the coupling manufacturer's instructions attached with this manual.
6. After checking the coupling alignment, reinstall the shaft/coupling guard. This guard MUST be in place when the fan is operating.
7. Make sure any inspection doors in the blower housing or duct work are securely bolted or locked.
8. Ensure all electrical power components are properly sized and matched for your electrical system.
9. Check the blower wheel, by spinning it by hand, to ensure it rotates freely.
10. Check that all required guards are properly secured.
11. Any dampers should be fully opened, then fully closed to make sure there is no binding or interference.
12. If your blower is mounted on an elevated support structure, make sure the structure is welded at all the joint connections, welds have not cracked and the structure is properly braced to prevent “side sway”.
13. Close any dampers to minimize the load on the motor, especially on blowers with high temperature construction. Never subject a “cold” blower to a “hot” gas stream. If the blower will be handling “hot gases” greater than 150°F (65°C) it is imperative that the blower be subjected to a gradual rate of temperature increase, not to exceed 15°F/minute (8°C/minute). The same temperature limits are also important when the blower is experiencing a drop in temperature until the temperature drops down to 150°F (65°C). Only, when the entire blower has reached an equilibrium temperature of 150°F (65°C), or less, should the power be turned off.
14. Make sure the power source connections to the blower motor are per the motor manufacturer's instructions.
15. Make sure the blower wheel is stationary prior to startup. Starting a blower with a wheel that is rotating backwards can cause wheel damage.
16. Apply power to the blower motor momentarily (i.e. “bump start”) to check for proper blower wheel rotation. If the blower is rotating in the wrong direction, reconnect the motor leads per the motor manufacturer’s wiring schematic. Blower rotation is determined by viewing the blower from the motor or drive side of the blower, NOT from the inlet side. After reconnecting the leads, repeat this step. See Fig. 5 below.

Fig. 5

17. Apply power to the motor and let it come up to full speed. Turn off the power. Look and listen for any unusual noise or mechanical abnormality while the blower wheel is still spinning. If any are noticed, lock out the power, wait for the blower wheel to come to a complete stop, locate the cause and correct it.
18. Unlock power and start the blower.
19. Measure, record and keep the following motor data for future reference and comparison:
 (Single phase motors will only have L1 and L2 leads)
 Amperage draw on each motor lead: L1 _______ L2 _______ L3 _______
 (Running amps SHOULD NOT exceed the motor name plate amps for the voltage being operated on).
 Voltage coming to motor leads: L1 _______ L2 _______ L3 _______
 (Should be about the same input voltage on all leads)
B. Vibration:

The blower was balanced at the factory to comply with ANSI/AMCA Standard 204-05, Category BV-3. However, rough handling in shipment and/or erection, weak and/or non-rigid foundations, and misalignment may cause a vibration problem after installation. After installation, the vibration levels should be checked by personnel experienced with vibration analysis and vibration analysis equipment.

NOTE:

The blower SHOULD NOT be operated if the vibration velocity of the blower exceeds 0.40 inches per second, filter out, if the blower is rigidly mounted. If the blower is mounted on isolators or on an isolator base, it SHOULD NOT be operated if the vibration velocity of the blower exceeds 0.65 inches per second, filter out.

Vibration readings should be taken at the locations as per Fig. 6 below. After you have taken your vibration readings, write them down in the spaces below and keep for future comparison.

DANGER

If the blower is going to be conveying material, it is the user’s responsibility to periodically turn the blower off and lock out the power. The blower wheel should then be checked for material build-up and/or erosion. If material has built up on any parts of the wheel, it MUST be removed and cleaned before it is put back into service. If any parts of the wheel have been eroded, the wheel MUST be replaced. Failure to perform this inspection can cause excessive vibration that will damage the blower and/or motor bearings. When vibration becomes excessive, it will lead to complete blower failure that could cause property damage, severe personal injury and death. The user must determine the frequency of this inspection based on the actual circumstances of their operation, BUT checking the vibration readings should NEVER exceed a 12 month period. For the AMCA/ANSI standard for vibration limits, see Fig. 7 on page 9.

Fig. 6 (Motor/blower bearing reading points)

<table>
<thead>
<tr>
<th>VIBRATION METER PROBE POSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Arrangement 8 Blowers</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
</tbody>
</table>

A Pre-Startup Readings taken by: ________________________ Date:__________________

B 8 Hour Post-Startup Readings taken by: ________________________ Date:__________________

C 3 Day Post-Startup Readings taken by: ________________________ Date:__________________
BEFORE STARTING ANY INSPECTION OR MAINTENANCE, BE SURE BLOWER IS TURNED OFF, POWER IS LOCKED OUT AND THE BLOWER WHEEL HAS BEEN CAREFULLY SECURED TO PREVENT WIND MILLING. IF THE OPERATING CONDITIONS OF THE BLOWER ARE TO BE CHANGED (SPEED, PRESSURE, TEMPERATURE, ETC.) CONSULT CINCINNATI FAN OR OUR SALES OFFICE FOR YOUR TERRITORY TO DETERMINE IF THE UNIT WILL OPERATE SAFELY AT THE NEW CONDITIONS.
A. Hardware:
All blower and foundation hardware should be checked to make sure it is tight. All set screws or taper-lock bushing bolts should be tightened to the torque values shown in Tables 1 and 2 on page 5.

NOTE: If any set screws have become loose, they must be thrown away and replaced. **NEVER** use set screws more than once. Replace with knurled, cup-point set screws with a nylon locking patch.

B. Motor and Blower Bearing Lubrication:

1. Motor Bearings:
Most smaller motors have sealed bearings that never require re-lubrication for the life of the motor. For any motors with grease fittings, consult the motor manufacturers recommendations with reference to the lubrication frequency and the type of grease that should be used.

DO NOT over grease the motor bearings. Generally, 1-2 shots should be enough. Use a hand operated grease gun at no more than 40 PSI. **IF POSSIBLE, CAREFULLY** lubricate the motor bearings while the motor is running.

2. Blower Bearings:
Blower bearings should be re-lubricated per the chart below for all clean and dry applications where the ambient temperature or blower air temperature is -20°F (-29°C) up to 120°F (49°C). If your application is dirty, moisture laden air, or is outside the temperature limits stated previously, consult the bearing manufacturer for the proper grease type and lubrication frequency. The chart below is affixed to every arrangement 8 blower base.

NOTE: For high temperature applications that require high temperature grease in the blower bearings, a chart similar to below will also specify that ONLY Dow Corning DC44 (silicone based) high temperature grease should be used.

DO NOT over grease the blower bearings. Generally, 1-2 shots should be enough. Use a hand-operated grease gun at no more than 40 PSI. **IF POSSIBLE, CAREFULLY** lubricate the blower bearings while the blower is running.

<table>
<thead>
<tr>
<th>FAN OPERATING SPEED (RPM)</th>
<th>FAN SHAFT O.D. IN INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/2“ TO 1”</td>
</tr>
<tr>
<td>UP TO 500</td>
<td>6</td>
</tr>
<tr>
<td>501-1000</td>
<td>6</td>
</tr>
<tr>
<td>1001-1500</td>
<td>6</td>
</tr>
<tr>
<td>1501-2000</td>
<td>5</td>
</tr>
<tr>
<td>2001-2500</td>
<td>5</td>
</tr>
<tr>
<td>2501-3000</td>
<td>5</td>
</tr>
<tr>
<td>3001-3500</td>
<td>4</td>
</tr>
<tr>
<td>3501-4000</td>
<td>3</td>
</tr>
<tr>
<td>4001-4500</td>
<td>2</td>
</tr>
<tr>
<td>4501-5000</td>
<td>2</td>
</tr>
</tbody>
</table>

The above lubrication frequencies are based on the fan bearings operating in a clean and dry environment from -20°F (-29°C) up to 120°F (49°C). For hostile, moisture laden environments and/or temperatures below -20°F (-29°C) or above 120°F (49°C), consult the bearing manufacturer for the proper grease type and recommended lubrication frequencies.

If possible, **carefully** lubricate the bearings while the fan is running.

Add grease until a slight bead appears at the bearing seals. **DO NOT** over grease. Generally, 1-2 shots with a hand grease gun that has a maximum pressure rating of 40 PSI.

Warning: Over greasing bearings will cause them to run hot.

The **TYPE** of grease you use **MUST BE** compatible with the grease already in the bearings.

C. Wheel Balance:
All blower wheels are balanced at the factory. It is not uncommon that additional “trim balancing” is required after the blower is assembled. Trim balancing of the blower assembly, in the field, is typically **always** necessary for all replacement wheels. **After any wheel is installed, the final balance of the entire blower assembly should be checked.** Refer to Section B on page 8 and Fig. 7 on page 9.

Airstream material or chemicals can cause abrasion or corrosion of the blower parts. This wear is generally uneven and, over time, will lead to the wheel becoming unbalanced causing excessive vibration. When that happens, the wheel must be rebalanced or replaced. The other airstream components should also be inspected for wear or structural damage and cleaned or replaced if necessary. **After cleaning any blower wheel, it should be balanced and then “trim balanced” on the blower shaft.
There are three ways to balance a blower wheel:

1. **Add balancing weights for fabricated aluminum, steel or stainless steel wheels:**
 Balance weights should be rigidly attached to the wheel at a location that will not interfere with the blower housing or disrupt air flow. They should (if at all possible) be welded to the wheel. When trim balancing the wheel, on the blower shaft, be sure to ground the welder **directly** to the wheel. Otherwise, the welding current will likely pass through the blower shaft and damage the blower and/or motor bearings.

2. **Grinding off material for cast aluminum wheels:**
 When grinding on the wheel to remove material, be very careful not to grind too much in one area. That could affect the structural integrity of the wheel.

3. **Forward curved wheels, Model LM only (also known as squirrel cage or multivane wheels).**
 These wheels have balancing clips attached to individual blades around the wheel. That is the only proper way to balance this type of wheel.

NOTE:
Removing any Forward Curved, Backward Inclined or Airfoil wheel from the blower requires special attention when reinstalling the wheel back into the blower housing. Make sure you reinstall the wheel so the proper wheel-to-inlet clearance is maintained. Failure to do this will affect the blower’s airflow (**CFM**), and/or static pressure (**SP**) capabilities and efficiency. Consult Cincinnati Fan or our local sales office for your area for assistance if necessary.

D. Vibration:
As mentioned previously in this manual, excessive vibration can cause premature motor and/or blower bearing failure that could lead to catastrophic failure of the blower. After performing any routine maintenance, the vibration readings should be taken again. New readings should be taken (maximum every 12 months) and compared to the readings you recorded in **Fig. 6**, on page 8, during the initial startup. **If any major differences are present, the cause should be determined and corrected before the blower is put back into operation.**

The most common causes of vibration problems are:

1. Wheel unbalance
2. Bearing failure
3. Mechanical looseness
4. Poor blower inlet and/or discharge conditions
5. Foundation stiffness
6. Misaligned blower bearings or blower/motor coupling

E. Blower Shaft & Bearing Replacement:
The blower shafts and bearings for Cincinnati Fan blowers are carefully selected to match the maximum load and operating conditions for each specific blower model. If the instructions in this manual and those provided by the bearing manufacturer are followed, you should not need to replace the bearings for many years.

When you do need to replace the bearings, it is strongly recommended that the blower shaft and coupling also be replaced at the same time.

Use the following applicable steps when replacing the blower bearings, blower/motor coupling and/or blower shaft:

1. **LOCK OUT THE POWER SOURCE TO THE MOTOR AND LET WHEEL COME TO A COMPLETE STOP.**
2. If necessary, disconnect the inlet and/or discharge duct work from the blower.
3. Remove the inlet side of the blower housing or unbolt the drive side plate.
4. Measure the location of the blower wheel on the shaft, then remove the locking hardware in the wheel hub.
5. **Carefully** remove the blower wheel.
6. Remove the blower shaft/bearing/coupling guard.
7. Remove the 4 bolts holding the motor onto the motor base.
8. Remove the set screws that hold the coupling on the blower and motor shafts.
9. Remove the motor and blower/motor shaft coupling.
10. Disconnect any lube lines to the bearings (if applicable).
11. On most models, there is a rust preventative coating that was applied to the blower shaft before shipment. Remove this coating at all areas with a solvent or degreaser.

WARNING: DO NOT use gasoline to remove the coating. **CAUTION:** Use gloves to protect your skin.
12. Measure location between bearings and distance from the bearings to each end of the shaft.
13. Remove the hardware holding the bearings on the blower shaft. Then, remove blower shaft from bearings.
14. Remove the hardware holding the bearings on the blower base. **Be careful not to change the location of any bearing pads that are under the bearings.**
15. When replacing the bearings, we strongly recommend that the blower shaft and blower/motor coupling also be replaced. However, if you intend to use the same blower shaft, file down all the setscrew marks on the shaft.
16. Install new bearings onto the new blower shaft or onto the original shaft. Be sure the bearing locking collars are facing each other and the set screws are in line with each other.
17. Place the blower shaft/bearing assembly onto the blower base with any bearing pads located under each bearing as were under the original bearings.
18. Install the hardware to bolt the bearings to the blower base, **but DO NOT** tighten at this time.
VI. ORDERING REPLACEMENT PARTS:

A. If this fan is vital to any process that could cost you lost revenue, we strongly recommend that you keep a blower wheel, blower shaft, blower bearings, blower/motor coupling and a motor at your location.

B. If this fan is vital for the safety of any people and/or animals, we strongly recommend that you keep a complete blower/motor assembly, as originally ordered, at your location.

To order any parts or complete units, contact us for the name of our sales office for your area. Or you can find them on our website at: www.cincinnatifan.com

WE MUST HAVE THE BLower SERIAL NUMBER FROM THE BLOWER NAME PLATE TO IDENTIFY PARTS CORRECTLY.
VII. TROUBLESHOOTING

Potential problems and causes listed below are in no order of importance or priority. The causes are only a list of the most common items to check to correct a problem. If you find the cause of a problem, DO NOT assume it is the ONLY cause of that problem. Different problems can have the same causes.

![DANGER]

Troubleshooting should only be performed by trained personnel. Any potential electrical problems should only be checked by a licensed electrician. All safety rules, regulations and procedures MUST be followed. Failure to follow proper procedures can cause property damage, severe bodily injury and death.

<table>
<thead>
<tr>
<th>PROBLEM</th>
<th>CAUSE</th>
</tr>
</thead>
</table>
| Excessive Vibration | 1. Loose mounting bolts, set screws, taper-lock hub bolts, bearings or coupling.
 2. Misalignment of coupling, blower bearings or motor.
 3. Worn or corroded blower wheel.
 4. Accumulation of foreign material on blower wheel.
 5. Bent motor or blower shaft.
 6. Worn motor and/or blower bearings.
 7. Worn coupling.
 9. Inadequate structural support.
 10. Support structure not sufficiently cross braced.
 11. Weak or resonant foundation.
 12. Foundation not flat and level. |
| Airflow (CFM) Too Low | 1. Blower wheel turning in wrong direction (rotation).
 2. Actual system static pressure (SP) is higher than expected.
 3. Motor speed (RPM) too low.
 4. Dampers or valves not adjusted properly.
 5. Leaks or obstructions in duct work.
 6. Filters dirty.
 7. Inlet and/or discharge guards are clogged.
 8. Duct elbow too close to blower inlet and/or discharge.
 9. Improperly designed duct work
 10. Wheel not properly located relative to the inlet bell (on Models LM, HDBI and HDAB only). |
| Airflow (CFM) Too High | 1. Actual system static pressure (SP) is lower than expected.
 2. Motor speed (RPM) too high.
 3. Filter not in place.
 4. Dampers or valves not adjusted properly. |
| Motor Overheating | NOTE: A normal motor will operate at 174°F. See B-8 on page 6.
 1. Actual system static pressure (SP) is lower than expected.
 2. Voltage supplied to motor is too high or too low.
 3. Motor speed (RPM) too high or defective motor.
 4. Air density higher than expected.
 5. Motor wired incorrectly and/or loose wiring connections. |
| Excessive Noise | 1. Wheel rubbing inside of housing.
 2. Worn or corroded blower wheel.
 3. Accumulation of foreign material on blower wheel.
 4. Loose mounting bolts, set screws, taper-lock hub bolts, bearings or coupling.
 5. Misalignment of blower bearings or coupling.
 6. Bent motor or blower shaft.
 7. Worn motor and/or blower bearings.
 9. Motor and/or blower bearings need lubrication.
 10. Vibration originating elsewhere in system.
 11. System resonance or pulsation.
 12. Inadequate or faulty design of blower support structure.
 13. Blower operating near “stall” condition due to incorrect system design or installation. |
| Fan Doesn’t Operate | 1. Motor wired incorrectly and/or loose wiring connections.
 2. Incorrect voltage supply.
 3. Defective fuses or circuit breakers.
 4. Power turned off elsewhere.
 5. Defective motor. |
VIII. LONG TERM STORAGE INSTRUCTIONS: (Storage exceeding 30 days after receipt of equipment)

NOTE: Failure to adhere to these instructions voids all warranties in their entirety.

1. Storage site selection:
 (a) Level, well-drained, firm surface, in clean, dry and warm location. Minimum temperature of 50°F (10°C).
 (b) Isolated from possibility of physical damage from construction vehicles, erection equipment, etc.
 (c) Accessible for periodical inspection and maintenance.

2. The blower should be supported under each corner of its base to allow it to “breathe”. Supports (2 x 4’s, timbers, or railroad ties) should be placed diagonally under each corner.

3. If the equipment is to be stored for more than three (3) months, the entire blower assembly must be loosely covered with plastic, but not tightly wrapped.

4. Initial inspections must be made of the following components, and immediate corrective action taken if discrepancies are found, to insure adequate protection of the equipment during storage.
 (a) Blower bearings only should be completely filled with lubricant to minimize the chance of oxidation or rust.

5. Storage Maintenance:
 A periodic inspection and maintenance log, by date and action taken, must be developed and maintained for each blower. See example below. Each item must be checked monthly.

 EXAMPLE:

 Storage / Maintenance Schedule Log

<table>
<thead>
<tr>
<th>ITEM</th>
<th>ACTION</th>
<th>DATES CHECKED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Re-inspect units to insure any protective devices used are functioning properly. Check for scratches in the finish which will allow corrosion or rust to form.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Rotate wheel or blower shaft a minimum of 10 full revolutions to keep the motor and blower bearing grease from separating and drying out. This is a critical step.</td>
<td></td>
</tr>
</tbody>
</table>

6. General Motor Procedure:
 If the motor is not put into service immediately, the motor must be stored in a clean, dry, warm location. Minimum temperature of 50°F (10°C). Several precautionary steps must be performed to avoid motor damage during storage.
 a. Use a “Megger” each month to ensure that integrity of the winding insulation has been maintained. Record the Megger readings. Immediately investigate any significant drop in insulation resistance.
 b. DO NOT lubricate the motor bearings during storage. Motor bearings are packed with grease at the factory. Excessive grease can damage the insulation quality in the motor.
 c. If the storage location is damp or humid, the motor windings must be protected from moisture. This can be done by applying power to the motor’s space heaters, (IF AVAILABLE) while the motor is in storage. If the motor does not have space heaters, storing it in a damp or humid location will, very quickly, cause internal corrosion and motor failure which is not warranted.
 d. Rotate motor shaft a minimum of 10 full turns each month to keep bearing grease from separating and drying out.

NOTE:
For specific storage instructions, for the actual motor and any accessory parts that were supplied, refer to the manufacturer’s instructions.
IX. LIMITED WARRANTY:
Cincinnati Fan & Ventilator Company (Seller) warrants products of its own manufacture, against defects of material and workmanship under normal use and service for a period of eighteen (18) months from date of shipment or twelve (12) months from date of installation, whichever occurs first. This warranty does not apply to any of Seller's products or any part thereof which has been subject to extraordinary wear and tear, improper installation, accident, abuse, misuse, overloading, negligence or alteration. This warranty does not cover systems or materials not of Seller's manufacture. On products furnished by Seller, but manufactured by others, such as motors, Seller extends the same warranty as Seller received from the manufacturer thereof. Expenses incurred by Purchaser's in repairing or replacing any defective product will not be allowed except where authorized in writing and signed by an officer of the Seller.

The obligation of the Seller under this warranty shall be limited to repairing or replacing F.O.B. the Seller's plant, or allowing credit at Seller's option. THIS WARRANTY IS EXPRESSLY IN LIEU OF ALL OTHER WARRANTIES EITHER EXPRESSED OR IMPLIED INCLUDING THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE AND OF ALL OTHER OBLIGATIONS AND LIABILITIES OF THE SELLER. THE PURCHASER ACKNOWLEDGES THAT NO OTHER REPRESENTATIONS WERE MADE TO PURCHASER OR RELIED UPON BY PURCHASER WITH RESPECT TO THE QUALITY OR FUNCTION OF THE PRODUCTS HEREFOR SOLD.

Removal of the Seller's nameplate or any generic fan nameplate containing the fan serial number voids all warranties, either written or implied. Failure to complete and document all the pre-startup and post startup checks and perform the suggested routine maintenance checks voids all warranties, either written or implied.

LIMITATION OF LIABILITY:
Notice of any claim, including a claim for defect in material or workmanship, must be given to Seller in writing within 30 days after receipt of the equipment or other products. Seller reserves the right to inspect any alleged defect at Purchaser's facility before any claim can be allowed and before adjustment, credit, allowance replacement or return will be authorized. See RETURNS below. Seller's liability with respect to such defects will be limited to the replacement, free of charge, of parts returned at Purchaser's expense F.O.B. Seller's plant and found to be defective by the Seller.

IN NO EVENT WILL SELLER BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUENTIAL DAMAGES, WHETHER IN CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY OR OTHERWISE, INCLUDING WITHOUT LIMITATION DAMAGES FOR INJURY TO PERSONS OR PROPERTY, LOST PROFITS OR REVENUE, LOST SALES OR LOSS OF USE OF ANY PRODUCT SOLD HEREUNDER. PURCHASER'S SOLE AND EXCLUSIVE REMEDY AGAINST SELLER WILL BE THE REPLACEMENT OF DEFECTIVE PARTS AS PROVIDED HEREIN OR REFUND OF THE PURCHASE PRICE FOR DEFECTIVE PRODUCTS, AT SELLER'S SOLE OPTION. SELLER'S LIABILITY ON ANY CLAIM, WHETHER IN CONTRACT, TORT, NEGLIGENCE, STRICT LIABILITY OR OTHERWISE, FOR ANY LOSS OR DAMAGE ARISING OUT OF OR IN CONNECTION WITH PURCHASER'S ORDER OR THE PRODUCTS OR EQUIPMENT PURCHASED HEREUNDER, SHALL IN NO CASE EXCEED THE PURCHASE PRICE OF THE EQUIPMENT GIVING RISE TO THE CLAIM.

RESPONSIBILITY:
It is the understanding of the Seller that Purchaser and/or User will use this equipment in conjunction with additional equipment or accessories to comply with all Federal, State and local regulations. The Seller assumes no responsibility for the Purchaser's and/or User's compliance with any Federal, State and local regulations.

RETURNS:
Cincinnati Fan & Ventilator Company assumes no responsibility for any material returned to our plant without our permission. An RMA (Return Material Authorization) number must be obtained and clearly shown on the outside of the carton or crate and on a packing slip. Any items returned must be shipped freight prepaid. Failure to comply will result in refusal of the shipment at our receiving department.

DISCLAIMER
This manual, and all its content herein, is based on all applicable known material at the time this manual was created. Any parts of this manual are subject to change at any time and without notice.
If any statements, diagrams and/or instructions contained herein, for components not manufactured by the Seller, conflict with instructions in the manufacturer's manual (i.e.: motors, bearings, couplings, dampers, etc.), the instructions in the manufacturer's manual, for that component take precedent.
Should you want the latest version of this manual, please contact us or our sales office for your area. Or, you can print a current version by going to our website at: www.cincinnatifan.com
X. PARTS DRAWING:

PLEASE NOTE

Cincinnati Fan manufactures many models and arrangements with special variations. For that reason, the maintenance manuals contained on our website do not include a parts drawing nor the completed blower or fan specifications on page 1. For the parts drawing of all the standard components and specifications for the specific blower or fan that you have, please contact our local Cincinnati Fan sales office for your area.

You will need to give them the serial number shown on the blower or fan nameplate so they can supply you the correct information.

Click on “Contact a Sales Rep” on our website for the name and contact information for our local sales office for your area.

www.cincinnatifan.com
Sure-Flex flanges (outer metallic parts) and sleeves (inner elastomeric members) come in many sizes and types. First, determine the size and type of components being used. Remove all components from their boxes, and loosely assemble the coupling on any convenient surface. (Do not attempt to install the wire ring on the two-piece E or N sleeve at this time.) Also check maximum RPM values in Table 2 against operating speed. All rubber sleeves (EPDM and Neoprene) have the same ratings for a given size and may be used interchangeably. However, because rubber and Hytrel sleeves have completely different ratings, they never should be used interchangeably.

1. Inspect all coupling components and remove any protective coatings or lubricants from bores, mating surfaces and fasteners. Remove any existing burrs, etc. from the shafts.

2. Slide one coupling flange onto each shaft, using snug-fitting keys where required. With the Type B flange, it may be necessary to expand the bore by wedging a screwdriver into the saw cut of the bushing.

3. Position the flanges on the shafts to approximately achieve the G_1 dimension shown in Table 2. It is usually best to have an equal length of shaft extending into each flange. Tighten one flange in its final position. Refer to Table 1 for fastener torque values. Slide the other far enough away to install the sleeve. With a two-piece sleeve, do not move the wire ring to its final position; allow it to hang loosely in the groove adjacent to the teeth, as shown.

4. Slide the loose flange on the shaft until the sleeve is completely seated in the teeth of each flange. (The “G_1” dimension is for reference and not critical.) Secure the flange to the shaft using the torque values from Table 1.

Table 1 — Fastener Torque Values (ft.-lbs.)

<table>
<thead>
<tr>
<th>Coupling Size</th>
<th>TYPE J 2 Setscrews at 90°</th>
<th>TYPE S 2 Setscrews at 90°</th>
<th>TYPE B 3 Hex Head Cap Screws</th>
<th>TYPE SC* 4 Hex Head Cap Screws Flange to Hub</th>
<th>TYPE C 1 Setscrew Over Keyway in Hub</th>
<th>Clamping Screws</th>
<th>1 Setscrew Over Keyway</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>...</td>
<td>5(^{1/2}) **</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>...</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
<td>13</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>23</td>
<td>23</td>
<td>9</td>
<td>23</td>
<td>23</td>
<td>55</td>
<td>13</td>
</tr>
<tr>
<td>9</td>
<td>23</td>
<td>23</td>
<td>9</td>
<td>23</td>
<td>23</td>
<td>55</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>23</td>
<td>23</td>
<td>15</td>
<td>50</td>
<td>50</td>
<td>130</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>23</td>
<td>30</td>
<td>75</td>
<td>50</td>
<td>130</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>...</td>
<td>50</td>
<td>60</td>
<td>150</td>
<td>100</td>
<td>250</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>...</td>
<td>100</td>
<td>75</td>
<td>150</td>
<td>165</td>
<td>250</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>...</td>
<td>100</td>
<td>75</td>
<td>150</td>
<td>165</td>
<td>250</td>
<td>13</td>
</tr>
<tr>
<td>16</td>
<td>...</td>
<td>100</td>
<td>135</td>
<td>150</td>
<td>165</td>
<td>250</td>
<td>13</td>
</tr>
</tbody>
</table>

*Torque values apply to hub size when different than flange size.
**Value for socket head clamping screw.
Sure-Flex Installation Instructions (continued)

Different coupling sleeves require different degrees of alignment precision. Locate the alignment values for your sleeve size and type in Table 2 below.

5 Check parallel alignment by placing a straightedge across the two coupling flanges and measuring the maximum offset at various points around the periphery of the coupling without rotating the coupling. If the maximum offset exceeds the figure shown under "Parallel" in Table 2, realign the shafts.

6 Check angular alignment with a micrometer or caliper. Measure from the outside of one flange to the outside of the other at intervals around the periphery of the coupling. Determine the maximum and minimum dimensions without rotating the coupling. The difference between the maximum and minimum must not exceed the figure given under "Angular" in Table 2. If a correction is necessary, be sure to recheck the parallel alignment.

<table>
<thead>
<tr>
<th>Table 2 – Maximum RPM and Allowable Misalignment (Dimensions in inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sleeve Size</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Note: Values shown above apply if the actual torque transmitted is more than 1/4 the coupling rating. For lesser torque, reduce the above values by 1/2.

* Type H and HS sleeves should not be used as direct replacements for EPDM or Neoprene sleeves.

(1) Value when using 6J flanges is 2.125.

7 If the coupling employs the two-piece sleeve with the wire ring, force the ring into its groove in the center of the sleeve. It may be necessary to pry the ring into position with a blunt screwdriver.

8 Install coupling guards per OSHA requirements.

CAUTION: Coupling sleeves may be thrown from the coupling assembly with substantial force when the coupling is subjected to a severe shock load or abuse.

TB WOOD’S INCORPORATED • Chambersburg, PA 17201
T. B. WOOD’S CANADA LTD. • Stratford, Ontario N5A 6V6

FORM 741E 6-96
Printed in U.S.A.